
Object Technology

Reversibility in software engineering
Kim Waldén, Enea Data

What can we expect from analysis and design
methods? The basic need is simple:
obtaining a conceptual model of what

software we want to build, before we build it. For
small systems, informal descriptions may suffice, and
the architecture gradually emerge as the hopefully well-
structured source code takes shape. But for large,
many-developer, long-evolving systems, we need to
invest more in high-level specifications. Such
specifications can be used in two different ways, both
equally important:

A. As a high-level model to help us arrive at good
solutions to complex problems by gradual
refinement.

B. As an abstraction of an existing implementation
to help us understand and control the software
during its whole lifecycle.

The problem is that specifications using natural
language and ad hoc notation tend to become
ambiguous, inconsistent, and expensive to maintain.

Software development methods try to improve on
this by offering a set of concepts and notations with
more precise semantics. But the big challenge is
consistency, which raises two questions relating to A
and B above. First, how do we check implementation
consistency , meaning that the final code really
implements what was specified? Second, how do we
check specification consistency , meaning that the high-
level model is still a correct description of the evolving
software?

To be able to check implementation consistency, we
need to use high-level modeling concepts that are
compatible with those of the programming language, so
that all parts of the model can be traced to the source
code. However, forward compatibility is not enough.
We must also be able to see the high-level effects of
implementation changes. The key to maintaining
specification consistency is reversibility, which is the
ability to map the source code structure back into the
high-level models.

Reversibility is a strong requirement, since it forces
the high-level modeling concepts to be not only
compatible, but in fact similar to those used at the

The key to
maintaining

specification
consistency is
reversibility, which
is the ability to
map the source
code structure
back into the high-
level models.

implementation level. If they are not
similar, the mapping will not work in
both directions and the evolving system
will gradually diverge from the
specifications. To avoid this, the tacit
requirement in textbooks on analysis
and design is that all software changes
must start at the highest level models
and work their way down to the source
code. However, this is not feasible in
practice for two reasons. First, since
non-trivial manual translation is required
it is just too expensive to constantly
iterate over the different models.
Second, the top level analysis and design models are
only the tip of an iceberg. Most of the detailed
decisions collectively forming the behavior of a system
needs to be specified using a programming language.

Therefore, at some point during development, a
conceptual model of the system in terms of
implementation abstractions will emerge. This model,
usually residing in the heads of the developers and
passed on informally to new project members, is
needed to understand and control the evolving system.
It reflects directly what is running on the machine(s)
and can never be replaced by analysis and design
models expressed in a different conceptual system (like
entity-relationship diagrams or state-transition tables).

This brings us back to the initial question, what can
we expect from analysis and design methods? Well,
unless the modeling concepts chosen are in close
correspondence with those supported by the
implementation language, reversibility is lost. This
means that as the software changes, it will be
impossible (at reasonable cost) to continuously update
the high-level models and ensure specification
consistency. Thus the most we can hope to get from
non-reversible methods is initial help to arrive at a first
version of a system. Since enhancements and

(Article published in IEEE Computer, September 1996)



maintenance typically account for 80% or more of the
total software cost, the models of such methods cannot
be expected to play more than a minor role in software
engineering.

If analysis and design models are to serve as support
throughout the software lifecycle, we need a different
approach. We must use structuring concepts that can
be preserved as part of the implementation, and again
be extracted from the evolving source code to update
the high-level models. So what does this mean? Are
we supposed to use low-level programming constructs
to describe our analysis model and overall system
architecture? Certainly not. The idea is to use abstract
object-oriented specification at all levels.

All concepts—from those mirroring the problem
domain to those added later in the computational
model—are viewed as classes whose operations define
the behavior of the corresponding objects. If we stick
to the class as the basic structuring mechanism, and
only use inheritance and client relationships to describe
how the classes relate to each other, the desired
reversibility comes for free. This is because these
concepts are directly supported by the major industrial
O-O languages, so there will be no major impedance
mismatches. If, on the other hand, we include concepts
that cannot be mapped unambiguously to and from the
eventual source code, reversibility is lost.

But what about the power of a notation based only
on class abstractions connected by client and
inheritance relations? Will it be expressive enough, or
do we have to pay a high price for reversibility through
a less general and less precise high-level notation? Can
we do without the associations, multiplicities, and state
diagrams which are included in nearly all published
notations for OOA/D? The answer is yes. Since the
approaches are different, you lose some and you gain
some, but two crucial means of specification: strong
typing and class contracts, can more than compensate
for the loss of free associations. (For an introduction to
software contracts see this department in the March
1996 issue of Computer.)

Strong typing makes it possible to specify the
signatures (types of arguments and return value, if any)
of each operation in a class. Contracts make it possible
to also (partially) specify the semantics of each
operation in a purely declarative form, independently
of any implementation. For example, using the BON1

notation, an intersection in a traffic control system
might be defined by the class interface below.

The intersection controls a set of lanes whose lights
can be set to red or green. (Each lane may represent
several physical lanes whose lights are all connected,
showing the same color.) It has access to a timer which
can be used by the operate_normal command to iterate
through the stop and go cycles. The asterisk shows that
the command is deferred, meaning that it has no
implementation at this level. Proper behavior must be
supplied by descendant classes.

INTERSECTION *

lanes: SET [LANE]
timer: CLOCK
operate_normal*

Invariant

lanes .count ≥ 2;
∀ a , b ∈ lanes | a ≠ b •

¬ (a .light .is_green
and b .light .is_green)

The first part of the invariant section states that the
number of lanes must be at least 2 (not much of an
intersection otherwise). The second part says that for
each pair of lanes in the set, at most one can have the
green light on (important for avoiding accidents). The
lanes in the set may look like:

LANE

light: TRAFFIC_LIGHT
stop

! light .is_red

go
! light .is_green

The traffic light of each lane is accessible through the
query light , and the commands stop and go have
postconditions specifying the semantics of each
command in terms of the current state of the light
directly after executing the command. To avoid
unnecessary waiting when traffic is low, some lanes
may have built-in sensors:

ACTIVE_LANE

Inherits: LANE

sensor: SENSOR
vehicle_waiting: BOOLEAN

! Result ↔ light .is_red and
sensor .incoming_vehicle

This type of lane has a query vehicle_waiting , which
will return true if and only if the light is red and a
vehicle is approaching the intersection.

The specification language is simple, essentially
boolean expressions augmented by first-order predicate
logic, so we can reason about sets of objects. Its main
strength does not lie in the notation, but in the fact that
queries to other objects may be part of the expressions.
This opens the possibility of introducing new
specification primitives as queries to previously
defined abstractions (like the expressions lanes .count,

2



light .is_red, and sensor .incoming_vehicle in our
example). The advantages are twofold: first, we may
check the semantics of the queries by looking at the
contracts in their respective classes. Second, the names
of the queries and their signature types will reflect

This leads to a
specification

language whose
primitives will
automatically
adapt themselves
to the application
at hand.

meaningful concepts in the system. This
leads to a specification language whose
primitives will automatically adapt
themselves to the application at hand.

Because of their simplicity, contracts
can only cover part of the semantics of a
piece of software, but unlike fully formal
methods they are easy to read and to
apply routinely in everyday software
development. The gain in software
quality can be quite dramatic. Strong
typing, which is crucial for specification

of contracts, also has the side-effect of giving us most
client relations for free. Thus, in the overall
architecture depicted below we can infer the static
dependencies directly from the operation signatures in
our example.

TWO_WAY_
INTERSECTION

THREE_WAY_
INTERSECTION

TWO_WAY_
ACTIVE_

INTERSECTION

THREE_WAY_
ACTIVE_

INTERSECTION

SIGNAL_CONTROL

*
INTERSECTION

HISTORY

LANE
lanes: SET […]

▲▲

TRAFFIC_
LIGHT

light

ACTIVE_
LANE

▲

SENSOR

sensor

STATISTICS

TRAFFIC_CONTROL

We have added a cluster of classes implementing the
behavior of four different types of intersection, a
history class, and a statistics cluster to collect and
present information about traffic intensity, queue
lengths, waiting times etc.

All class interfaces have been compressed into class
headers containing just the names and some
ornamentation showing that INTERSECTION is a
deferred class, and that TRAFFIC_LIGHT and
SENSOR interfaces external software or hardware.

Client relations are shown as double arrows and
inheritance relations as single arrows, both applicable
to classes and/or clusters. Some of the client relations

Strong typing,
which is

crucial for
specification of
contracts, also has
the side-effect of
giving us most
client relations
for free.

have been labeled with the names of the
features causing the dependency. The
STATISTICS cluster has been
compressed (all classes hidden).

The ability to group classes
recursively into named clusters (the
dashed rounded boxes) combined with a
general facility for showing or hiding
details, addresses another important
issue, namely scalability . Being able to
zoom up and down layered models
without losing track of how the currently
visible components fit into the overall
structure is essential when trying to understand large
systems. We will not discuss scalability further here,
since it would require a column of its own.

It is time to conclude, so once again: what can we
expect from analysis and design methods? In my
experience, most developers who use methods
systematically—a small minority, to begin with—do so
to get help in coming up with a good initial system
design. Whether or not the resulting models turn out
useful in practice, they usually lose their importance
after the first software release (if not before) and the
source code starts living its own life.

As long as incompatible modeling primitives, such
as free associations and general state machines, are
included as essential ingredients in a method,
reversibility is lost. Without reversibility, it is
impossible to ensure specification consistency in the
long run, and analysis and design methods can only
play a marginal role in software engineering. I think
their potential is higher. Object-oriented abstraction, if
used in its pure form, offers a unique possibility to
attain reversibility. Let’s go for it.

References _____________________________________

1. K. Waldén and J.-M. Nerson, Seamless Object-
Oriented Software Architecture, Prentice Hall,
Englewood Cliffs, N. J., 1995

Kim Waldén is senior consultant at Enea Data in
Stockholm, Sweden. He has been engaged in
introducing O-O techniques in the Swedish software
industry since 1987. His email address is
kim@enea.se.

3




