SELECTING AND DESCRIBING OBJECT SCENARIOS 205

8.6 WORKING OUT CONTRACTING CONDITIONS

The BON approach focuses on the theory of software contracting, which we
consider the most important principle in existence today for constructing correct,
reliable software. No other technique proposed so far has the potential to turn
software development into the long-awaited discipline of engineering envisioned
by Douglas Mcllroy in his contribution to the now famous NATO conference in
1968 [Mcllroy 1976], and meet the challenge for an, as yet unrealized, software
components industry.

kim
and the text “For more information, select destination”. He presses
“Mallorca” and picks the first alternative from the resulting menu
“Major sights, Hotels, Recreations”. A video recording with samples
of the island’s cultural attractions appears on the screen…
Roles of scenarios
Scenarios can be of very different complexity. A scene like the one just
described illustrates how a complete problem, which we may called a user task,
is solved. Such scenarios can be broken down into more primitive pieces called
user actions (selecting weather conditions, submitting a choice).
Some scenarios representing major user tasks will often be worked out already
during task 1 in the BON process, since these can be of great help in guiding the
initial static modeling and convey a better understanding of what general view of
the problem domain to adopt. If the user problems to be solved are reasonably
understood at a bird’s eye level, the initial user task scenarios will hopefully be
realistic even if some of their details may change. So being as complete as
possible is of major importance here.
Later, when the basic class structure begins to stabilize, more scenarios
representing user actions will be added, enough to cover all types of primitive
user behavior at some level of abstraction. This can be done, since we now
understand the details better (usually during task 5 in BON).
However, the best partitioning may not always be two fixed levels—user tasks
and user actions. For simple systems there is perhaps no reason to separate the
two, while more complicated behavior may require more levels. Grouping
according to other criteria, such as user categories or subsystems, may also be
helpful.
Therefore, no explicit structuring is enforced by the BON charts—there is
only one type of scenario chart and scenario diagram. When a tailored structure
is needed, we simply recommend adding a category name in parentheses to the
name field of each scenario chart.

kim
Rectangle

206 BON STANDARD ACTIVITIES

The theory, called design by contract [Meyer 1988a, Meyer 1992c], is actually
an elegant synthesis of the essential concepts in three major fields of computing
research: object-orientation [Nygaard 1970],!# abstract data types [Guttag 1977,
Gougen 1978], and the theory of program verification and systematic program
construction [Floyd 1967, Hoare 1969, Dijkstra 1976].

Design by contract

Most pieces of software text in today’s systems are only partially understood by
their developers. The central task of each subprogram may be clear enough (and
sometimes even documented), but as every experienced programmer knows it is
the unusual cases, or even the ones that are never supposed to occur, that present
the real problems. Since it is never exactly spelled out who is responsible for the
exceptional cases—the supplier of a subprogram, or its clients—important
prerequisites for various algorithms are often either checked in many places, or
not checked at all.

The general feeling of distrust resulting from this practice has lead to a
desperate style of blind checking known as defensive programming, which leads
to even less understandable software with more errors because of the complexity
introduced by the added redundant code. So the only solution is to create instead
an atmosphere of mutual trust by specifying precisely who is responsible for
what part of a complex system behavior. This is what design by contract is all
about.

The idea is to treat each subprogram as a subcontractor who undertakes to
deliver some service (specified by a postcondition), but only if certain
prerequisites are fulfilled (the precondition). The key opening the gate to future
trust and order—so that you can finally know that you are right when designing a
program instead of just guessing [Mills 1975]—is not as one may think the
postcondition (which specifies what the supplier will do), but instead the
precondition (which specifies what the supplier will not do).

To take an example, suppose you are to define a subprogram to calculate the
square root of a real number. If you expect this program to work under all
conditions, you are in fact mixing two completely different tasks into one:

* Finding and returning the square root of a non-negative number.

14 Simula, the first object-oriented language, not only introduced the remarkable concepts of
inheritance and dynamic binding already in 1967, but was also the direct inspiration of almost all
later work on abstract data types. It included the strong typing of Algol 60, but had generalized
the single stack model into a multiple stack machine, which enabled encapsulation of
autonomous objects.

WORKING OUT CONTRACTING CONDITIONS 207

* Returning something reasonable when the input turns out to be negative
(assuming the output must be real).

For the first task we have a number of well-understood and efficient numerical
methods dating all the way back to Newton to choose from as supplier. For the
second task, we do not have a clue. Obviously the client has made a mistake,
and there is no way we can know what is a reasonable response.

Therefore, the only approach that makes any sense is to lift the second
problem off the shoulders of the supplier (who is not competent to handle it
anyway) and instead let it be the responsibility of the client not to ask impossible
questions. This may sometimes require explicit testing on the client side, but if it
does, there is no better place to do it. Usually the context will lead the client to
know without testing that the precondition is indeed fulfilled, something which is
never true for the supplier.

Contracting as a mutual benefit

The software contracting model has much in common with standard practices in
human society. For example, suppose you are in Stockholm and must deliver an
important package to an address at the other end of the city.!> Then you may
either deliver the package yourself, or engage a mail carrier to do it for you. If
you choose the latter alternative and employ the services of “Green Delivery”
(Stockholm’s bicycle courier), the standard agreement between you and the
courier looks like the one shown in figure 8.5. When two parties agree on
something in detail, the resulting contract protects both sides:

* It protects the client by specifying how much must be done.
* It protects the supplier by specifying how little is acceptable.

The obligations of one party become the benefits of the other. As an aside

Party Obligations Benefits

Client Provide package of maximum Get package delivered to recipient
weight 35 kg, maximum dimensions within central city limits in 30 minutes
parcel: 50 x 50 x 50 cm, or less without having to worry about
document: 60 x 80 cm. Pay 100 SEK. bad weather or traffic jams.

Supplier Deliver package to recipient No need to deal with deliveries
in 30 minutes or less, regardless too big, too heavy, or not prepaid.
of traffic and weather conditions.

Figure 8.5 A contract

15 The example is a slight modification of the one used in [Meyer 1992c].

208 BON STANDARD ACTIVITIES

(provided the contract covers everything) each obligation will also bring an
additional benefit: if the condition says you must do X, then X is all you need to
do. This may be called the No Hidden Clauses rule: sticking to the minimum
requirements of the contract is always safe for each party.

Regardless of the No Hidden Clauses principle there are usually external laws
and regulations whose purpose it is to prevent unfair contract clauses. For
example, if your package happens to contain a famous oil painting by Anders
Zorn the courier service is not permitted to drop it in the nearest garbage
container simply because it violates the precondition by measuring 80 by 90
centimeters.

Such external regulations, which are part of the general context in which the
contractors work, correspond to the class invariants of software contracts.

Laws of subcontracting

Polymorphism with dynamic binding is the main key to software flexibility. It
has the power to remove most of the discrete case analysis so error prone and
vulnerable to future changes—yet so abundant in traditional software. However,
flexibility is meaningless unless the resulting software is correct, and
polymorphism can be very dangerous in this respect.

Unless we are very careful when redefining an inherited operation, we may
easily end up with a system where only some of the implementations that may be
dynamically invoked will actually produce the expected result. What is there to
prevent a redefined area function from returning, in some cases, the diameter
instead? Without clear semantic rules, nothing but fuzzy naming conventions
and the folklore of software engineering.

The problem is more subtle than it may appear at first sight, because even if
every descendant class has a fully visible and correct specification of its
behavior, chaos may still ensue. For example, if we need to compute the area of
a list of geometric figures referred to by an entity of type LIST [FIGURE], all we
can look at as client is the specification of the area operation as it appears in
class FIGURE. During execution many different specialized versions of area
may be called dynamically, but we cannot check their corresponding
specifications when writing the list traversing code, if for no other reason than
because some of the corresponding classes may not yet exist!

Therefore, we must have strict rules that guarantee that any future descendant
class (whose operations may be invoked on our behalf whether we like it or not)
must fulfill the promises that were given by its ancestors. This leads directly to
the laws of subcontracting:

¢ A descendant class must fulfill the class invariant of the ancestor.

WORKING OUT CONTRACTING CONDITIONS 209

* A descendant class may never weaken the postcondition of a redefined
feature (since this would mean delivering less than specified by the
ancestor).

* A descendant class may never strengthen the precondition of a redefined
feature (since this would mean imposing restrictions on the client not
specified by the ancestor).

Note that nothing prevents a descendant class from strengthening postconditions
(doing even better than promised) or weakening preconditions (imposing even
fewer restrictions).

Note also that the above rules must be obeyed for every ancestor in the case of
multiple inheritance, and will therefore prevent the combination of incompatible
abstractions. This is extremely important for building the complicated
inheritance lattices needed by, for example, the general data structure libraries of
strongly typed language environments.

Where to put consistency checking

Design by contract offers an alternative to the blind checking of defensive
programming by specifying a clear division of responsibility between client and
supplier regarding the checking of various details of system consistency:

* The client is responsible for guaranteeing the precondition when calling.

* The supplier is responsible for guaranteeing the postcondition when
returning.

Therefore, we have to choose where to put our tests for consistency. Either a
condition is part of the precondition and must be ensured by the client, or it is
removed from the precondition and must then be handled by the supplier.

Which alternative to choose must be decided case by case based on many
factors, but the guiding star should always be the resulting simplicity and
understandability of the system architecture. A rule of thumb is that if most
clients need their own special treatment depending on some condition, it is better
to put it in the precondition, while if the behavior alternatives are more or less
standard for most clients, it may be simpler for the supplier to deal with them.

Classes as specification elements

As was argued in chapter 2, we should not strive to make the specification of an
object-oriented system independent of its design, since this would defeat its
purpose. Maintaining two entirely different descriptions (one for the system
specification and one for its implementation) does not make sense, because

210 BON STANDARD ACTIVITIES

specifications of large systems become large no matter what language we
choose. Therefore, separating the two worlds will only give us inconsistency
problems and more difficult maintenance for rapidly evolving systems.

So the specification elements used must in the end be translatable into object-
oriented expressions, involving feature calls on objects of the classes which are
part of the system design. These classes are the only abstractions that can
capture the complex behavior of the system through simple notation (provided
the design is good) as using an independent system specification would
necessitate starting from scratch. Instead, specification and implementation must
share the same abstraction base, since the executable code should only be the
innermost part of a layered design of abstractions.

Partial recursive specification will not tell us the whole truth about a system,
but it will tell us nothing but the truth, and it has the flexibility and
incrementality we seek. Any other approach breaks the seamlessness and is in
our view doomed to fail as a road to mastering the industrial development of
large and complex systems.16 Complete specification of large industrial systems
will probably never become feasible anyway, if only because of the constant
changes involved.

Run-time monitoring of assertions

An important side effect of the recursive specification approach described is that
assertions may be translated into procedural code and monitored during
execution. Basic boolean expressions map directly to programming language
primitives, while the first-order quantifications of BON assertions may be
implemented as functions. We take the simple class PERSON in figure 8.6 as an
example. Its invariant expresses that if you are a person, then each of your
children has you for one of its parents. (@ is the BON graphical symbol for
current object.)

The corresponding Eiffel code, which may be generated by a case tool, is
shown in figure 8.7. The control structure of Eiffel, from—until-loop—end,
should be self-explanatory and the LINKED_LIST class is a cursor structure,
which may be traversed by invoking features start and successions of forth until
the state affer is reached (meaning the cursor is positioned just after the list).
The standard feature ifem returns the list element at the cursor position and
Result is a predefined local variable containing a function’s return value.
(Entities of type BOOLEAN are initialized to false by default, so Result can be
used directly in the second function of figure 8.7.)

16 We are talking about general systems development here; certain critical or highly specialized
software may of course still at times benefit from other techniques.

WORKING OUT CONTRACTING CONDITIONS

/ PERSON \

name, address: VALUE
children, parents: LIST [PERSON]

Invariant

Qc € children ® (3 p € c.parents ® p = @)/

Figure 8.6 Consistency requirement: your children are really yours

class PERSON
feature
name, address: VALUE

children, parents: LINKED_LIST [PERSON

generated_assertion_I: BOOLEAN is
do
from
children .start; Result := true
until
children.after
loop
Result := Result and generated_subassertion_I (children.item)
children forth
end
end

generated_subassertion_I (c: PERSON): BOOLEAN is
do
from
c.parents.start
until
c.parents .after
loop
Result := Result or (c.parent.item = Current)
c.parents .forth
end
end
invariant
generated_assertion_1
end

Figure 8.7 Class with generated assertion routines

211

212 BON STANDARD ACTIVITIES

When specification elements are implemented using procedural code, we must
be extremely careful not to introduce any side effects, since this may change the
semantics of the system when the assertions are monitored. Moreover, since any
feature returning interesting information about the system state is a potential
specification element, the rule of side-effect-free functions acquires an even
greater importance.

Systematic exception handling

The contract theory also enables a very powerful exception handling mechanism
to be applied during system execution. Since routines are not just small pieces of
reusable software text, but precisely specified individual implementations, it is
possible to introduce a notion of failure. Failure occurs when an execution of a
routine is for some reason unable to fulfill its part of the contract.

An exception in a routine can be triggered in one of three ways: a supplier
returns failure, an assertion is violated, or a signal is received from the
surrounding hardware/operating system. (Note that assertion violation includes
violation of the postcondition just before returning, as well as violation of a
supplier precondition just before calling, since the latter is the client’s
responsibility.)

Exceptions may be processed by handlers, which will restore the class
invariant for the current object and then either admit failure or else execute the
whole operation again (after, for example, setting some flags). Admitting failure
means triggering, in turn, a failure exception in the caller.

Since this book focuses on analysis and design and the details of exception
handling are closely linked with the programming environment, we will not go
further. The interested reader is referred to [Meyer 1992c, Meyer 1992a].

Finally, the violation of an assertion means that some implementation did not
behave according to the specification. It is important to understand that this is a
sign of a software (or possibly hardware) error. Things that may be expected to
happen, no matter how seldom, must be part of the system specification and
should therefore be handled in the main logic of the class features.

kim
8.7 ASSESSING REUSE
Since BON is directly targeted at promoting reuse, we have chosen to view
various work related to it as a standard activity when completing the tasks
outlined in the BON process. This entails both the assessment of when existing
software may be reused for parts of the product under development, and
decisions regarding how much effort should be invested in future reusability of
the new software produced.

kim
Rectangle

